
Logic and Discrete Structures -LDS

Course 8 – Trees. Touples

S.l. Dr. Eng. Cătălin Iapă

catalin.iapa@cs.upt.ro

1

What have we covered so far?

Functions

Recursive functions

Lists

Sets

Relations

Dictionaries

Graphs

2

Trees

A tree is a connected undirected graph without cycles.

Trees are the simplest graphs in terms of structure in the
class of connected graphs, and they are also the most
commonly used in practice.

3
http://en.wikipedia.org/wiki/File:Tree_graph.svg

Trees

A tree is a connected undirected graph without cycles.

connected = path between any 2 vertices (of 1 or more steps)

It is composed of vertices and edges.

A tree with n vertices has n - 1 edges.

4
http://en.wikipedia.org/wiki/File:Tree_graph.svg

Trees exemples

5

(i) - tree

(ii) - tree

(iii) - tree

(iv) - is not tree

(v) - is not tree

(vi) - is not tree

(is forest)

Applied Discrete Structures, Al Doerr, Ken Levasseur, University of Massachusetts Lowell, 2022

Forest

A type of graph closely related to the concept of
a tree, but not fulfilling all the conditions of a
tree, is the forest.

A forest is an undirected unconnected graph
whose connected components are trees.

6

Conditions for a graph to be a tree

If we have the graph G = (V, E) undirected and cycle-free,
and |V| = n, the following propositions are equivalent:

• G is a tree

• For every 2 distinct vertices in V, there is only one path
between them

• G is connected, and if we have an edge e, then the
graph (V, E - {e}) is not connected

• G contains no cycles, but if we add an extra edge we
have a cycle

• G is connected, and |E| = n-1

7Applied Discrete Structures, Al Doerr, Ken Levasseur, University of Massachusetts Lowell, 2022

Rooted tree

Typically, we identify a specific node called the root, and
orient the edges in the same direction away from the
root.
Any node other than the root has a unique parent.
A node can have multiple children.
Nodes without children are called leaf nodes.

8
Imagine: http://en.wikipedia.org/wiki/File:N-ary_to_binary.svg

Trees in computer science

Trees are a natural way of representing
hierarchical structures:

• file system (subtrees are catalogs)

• syntactic tree in a grammar (e.g. expression)

• class hierarchy in object-oriented
programming (OOP)

• XML files (elements contain other elements)

9

Ordered and unordered trees

The order between children may (e.g. syntax tree)
or may not matter

Unordered trees with
2 - 4 nodes - in the figure:

There are 𝑛𝑛−2 unordered
trees with n nodes
(Cayley's formula)

10Imagine: http://en.wikipedia.org/wiki/File:Cayley’s_formula_2-4.svg

Trees - recursive structures

A tree is either:

• an empty tree or

• a node with 0 or more subtrees

 ⇒ a list of subtrees (leaves have empty list)

Depending on the problem, nodes contain
information

11

Binary trees

In a binary tree, each node has at most two
children, identified as the left and right child

(any/both may be missing)

⇒ a binary tree is:

• empty tree or

• a node with at most two subtrees

12

Binary trees

A binary tree of height n has at most

2𝑛+1 − 1 nodes

13

Binary Search Trees (BST)
Binary search trees are binary trees that store sorted
values.

For each node, relative to the
value in the root:
- the left subtree has smaller values
- the right subtree has higher values

The search is done recursively, always comparing the
searched element with the root of the current subtree:
- if they are equal we have found the element in the tree
- if < the current root, continue the search in the left
subtree
- if it is > the current root, continue the search in the right
subtree 14

Sorting using search trees

Search trees can be used to sort a string of objects that
can be ordered.

First create the search tree with the objects in the string:

- the first object will be the root of the tree

- the following objects are placed in the left or right
subtree, depending on the value

And then we traverse the search tree in-order (left tree,
root, right tree) and we get the ordered string objects.

15

16

17

18

19

Representation of a tree

To represent a tree, for each node we will have a
dictionary that will contain two pairs: the value of the
node and the list of values of its children.
The tree will be represented by a list containing all its
nodes in the form:

One node:
{"valore" : None, "copii" : []}

The tree:
[{"valore" : None, "copii" : […]}, …]

20

Representation of a tree - example

a_tree= [

 {"value" : 1, "children" : [2, 3, 4]},

 {"value" : 2, "children" : []},

 {"value" : 3, "children" : [5, 6]},

 {"value" : 4, "children" : []},

 {"value" : 5, "children" : []},

]

21

Representation of a tree

Another way to represent the tree is that the list
of children of a node directly holds the
information as a dictionary list, not just as a list
of values.

In this way we make use of the recursive
structure of a tree.

22

Representation of a tree - example

a_tree = { "value": 1, "children":
[

{ "value": 2, "children": []},
{ "value": 3, "children":

[
{ "value" :5, "children": []},
{ "value" :6, "children": []}

]
},
{ "value": 4, "children": []}

]
}

23

Representation of a binary tree

A binary tree can be represented recursively as a
dictionary with 3 pairs: value, left tree and right tree.

tree = {"value": None, "left": None, "right": None}

24

tree2 = { "value" : 2, "left":
 {
 "value": 7, "left": None, "right":
 {
 "value": 6, "left":
 {
 "value": 5, "left": None, "right": None
 }, "right":
 {
 "value":11, "left": None, "right": None
 },
 },
 }, "right":
 {
 "value": 5, "left": None, "right": None
 }
 } 25

Preorder traversal

def rsd(tree):

 if (tree != None):

 return [tree["value"]] + rsd(tree["left"]) + rsd(tree["right"])

 else:

 return []

print(rsd(binary_tree))

[2, 7, 6, 5, 11, 5]

26

Inorder traversal

def srd(tree):

 if (tree != None):

 return srd(tree["left"]) + [tree["value"]] + srd(tree["right"])

 else:

 return []

print(srd(binary_tree))

[7, 5, 6, 11, 2, 5]

27

Postorder traversal

def sdr(tree):

 if (tree != None):

 return sdr(tree["left"]) + sdr(tree["right"]) + [tree["value"]]

 else:

 return []

print(sdr(binary_tree))

#[5, 11, 6, 7, 5, 2]

28

Adding a new node

Adding a new node to a parent and a specific position:

def adaugare_nod_pozitie(parinte, nod_nou, pozitie):

 if (parinte[pozitie] == None):

 parinte[pozitie] = nod_nou

 return parinte

binary_tree["left"]=adaugare_nod_pozitie(binary_tree["left"],
{"value": 100, "left": None, "right": None}, "left")

print(rsd(binary_tree))

#[2, 7, 100, 6, 5, 11, 5]

29

Adding a new node
Adding a new node to the binary search tree:

def adaugare_nod(tree, nod_nou):

 if (tree == None):

 return nod_nou

 if (nod_nou

["value"]<tree["value"]):

 tree["left"] = adaugare_nod(tree["left"], nod_nou)

 else:

 tree["right"] = adaugare_nod(tree["right"], nod_nou)

 return tree

print(rsd(adaugare_nod(binary_tree,{"value": 1, "left": None,
"right": None})))

#[2, 7, 1, 6, 5, 11, 5] 30

Deleting a node/sub-tree

Deleting a node (or subtree) from a given parent as a
parameter:

def stergere_nod(parinte, valoare_nod):
 if (parinte["left"]["value"] == valoare_nod):
 parinte["left"] = None
 elif(parinte["right"]["value"] == valoare_nod):
 parinte["right"] = None

stergere_nod(binary_tree, 5)
print(rsd(binary_tree))
#[2, 7, 6, 5, 11]

31

Tuples in PYTHON

A tuple is a collection of predefined data in PYTHON
(in addition to lists, sets and dictionaries).

A tuple is an ordered collection of data and cannot
be changed after creation.

A tuple is written in round brackets:

tuple = (2, 5, 7, 1, 5)

32

Tuples in PYTHON

The elements of a tuple:

• are ordered (can be accessed by positive or
negative index)

• cannot be changed after creation

• allow duplicates

33

Tuples in PYTHON

The number of elements in the tuple can be found
with the len() function:

a = (1, 6, 8)
print(len(a)) # 3

To create a single-element tuple you need to put
round brackets and a comma at the end:

tuple = (5,)

34

Tuples in PYTHON
We can also create a tuple with the tuple() constructor:

a = tuple((4, 6, 8))
b = tuple([“Arad”, “Timisoara”])

Elements are accessed by indexes:

print(a[0]) # 4
print(b[1]) # Timisoara
print(b[-2]) # Arad
print(a[1:3]) # (6, 8)
print(9 in a) # False
print(8 in a) # True

35

Tuples in PYTHON

No elements can be added to the tuple and no elements
can be deleted after its creation.

These operations are allowed when working with lists.

If we want to create a new tuple with different elements
we can transform it into a list and process it:

a = (3, 5, 7, 3)

L = list(a)

#processing the list L

36

Tuples in PYTHON

We can extract elements from the tuple and then process
them independently:

t = (3, 3, 6, 8)
a, b, c, d = t
print(a) # 3
print(b) #3
print(c) #6

If the number of elements in the tuple is bigger, it is
mandatory to use an asterisk at the last object:
a, b, *c = t # c = (6, 8)

37

Tuples in PYTHON

We can create a new tuple with elements from 2
or more other tuples:

a = (1, 2, 3)

b = (“a”, “b”, “c”)

c = a + b

print(c) # (1, 2, 3, “a”, “b”, “c”)

38

Thank you!

39

Bibliography

• The content of the course is mainly based on the material
from the LSD course taught by Prof. Dr. Eng. Marius Minea
and S.l. Dr. Eng. Casandra Holotescu
(http://staff.cs.upt.ro/~marius/curs/lsd/index.html)

40

	Slide 1: Logic and Discrete Structures -LDS
	Slide 2
	Slide 3: Trees
	Slide 4: Trees
	Slide 5: Trees exemples
	Slide 6: Forest
	Slide 7: Conditions for a graph to be a tree
	Slide 8: Rooted tree
	Slide 9: Trees in computer science
	Slide 10: Ordered and unordered trees
	Slide 11: Trees - recursive structures
	Slide 12: Binary trees
	Slide 13: Binary trees
	Slide 14: Binary Search Trees (BST)
	Slide 15: Sorting using search trees
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Representation of a tree
	Slide 21: Representation of a tree - example
	Slide 22: Representation of a tree
	Slide 23: Representation of a tree - example
	Slide 24: Representation of a binary tree
	Slide 25
	Slide 26: Preorder traversal
	Slide 27: Inorder traversal
	Slide 28: Postorder traversal
	Slide 29: Adding a new node
	Slide 30: Adding a new node
	Slide 31: Deleting a node/sub-tree
	Slide 32: Tuples in PYTHON
	Slide 33: Tuples in PYTHON
	Slide 34: Tuples in PYTHON
	Slide 35: Tuples in PYTHON
	Slide 36: Tuples in PYTHON
	Slide 37: Tuples in PYTHON
	Slide 38: Tuples in PYTHON
	Slide 39
	Slide 40: Bibliography

